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Computercodessimulatinghighenergy densityphysicsconsistof modulesfor dis-
tinct physicalprocesses,e.g.,compressiblehydrodynamicsandradiationtransport.For
thelatter, onemodelassumestight couplingbetweenradiationandmatter. Thedepen-
dentvariablesarethe spectralradiationenergy density � �������	��
�� andthe mattertem-
perature
 ������
�� , where

�
,
�
, and



denoteposition,frequency, andtime, respectively.

Thesystemis of parabolicform,��� � � ��� ��� ��� ������������� � � ��� (1)����! � � 
 � �"���$#&%')( �*�+��� � � ��, (2)

In (1)-(2),
�

is the speedof light,
�

the massdensity,
�

the opacity, and
� !

the
specificheat.ThePlanckfunction

�.-0/2143	�65879�;:8�
, where

/<- �=3 
 . In our context,���>���?
��
is a known function. Theopacityis a complicatedfunctionof

�
, 
 , and

�
. For

“free-freetransitions”,
�@-A�CBC1

. The coefficient
�

dependson the meanfree pathD ,� :E34�F� and,to mitigateunphysicalpropagationspeeds,a flux limiter is introduced.
Onecommondescriptionis

� � �G3	H IJ� � �K�&L23 DNM , where
I �PO �Q�JO 3 � .

Equations(1)-(2)aresolvedbydiscretizingthespectrumRTS � SVU into W groups
definedby X �GYEZ8[Y?\ ' . Integrationover eachinterval

�]�GY BK^ �_�GY8� , yields the multigroup
equationsin which the integral over

�
is replacedby a sumof W terms. The system

is difficult to solve becauseof its nonlinearityand wide rangesof time and spatial
scales.Therangesareevidencedby thecoupling

�����`� � �G3 D � anddiffusion
�bac� D

terms.High frequency radiationis characterizedby
D"d :

, i.e.,slow couplingandfast
transport.Theoppositeholdsfor low frequencies.In simulations,thecoefficientscane
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vary over10 to 30 ordersof magnitude.Thedifficulty is compoundedby nonlinearity
andmaterialcompositionsincethecoefficientsdependon

�
and 
 .

In this talk wedescribeaschemeto solve(1)-(2) for multiphysicscodescontaining
aseparatehydrodynamicmodule.Sincesuchcodestypically runattheCourant-limited
sound speed,for our applications,thetime step f 
 is arbitrarily large. Hence,we use
backwardEulertemporaldifferencing.After multiplying throughby f 
 , weobtain,

R � � 'Y � � Yg� �P� �6�ihY ��� Y8���kj4Yl�6�$Y$� � Y8���nm � :o�p,G,p,K� W � (3)

R � �g� ! � 
 ' � 
 �q� [rY Bs^ j4Yl���"Y"� � YG�F� (4)

where
� hY ��f 
	� Y , j Y � � f 
2��� Y , andthesuperscriptR denotesthesolutionat the

prior time level. The index
m

replacesthe frequency dependence.Thus, � Y �.t ( � �
andsimilarly for

�
, wheretheintegrationis over

�]�GY BK^ �u�GY8� . Thecoefficients
�+Y

and�	Y
denoteaveragesover theinterval.

Viewing (3)-(4) asa nonlinearelliptic system,we introducepseudotransientcon-
tinuation

�wv
tc). On the LS of (3), we place

� � Yx� �KyY �?3 f�z , where fQz is the
v

tc
parameterand �KyY is thesolutionat thepreviouspseudo time. Similarly, theLS of (4)
becomes

����!F� 
 � 
{y �?3 f�z . Thedesiredsolutionis thepseudotimesteady-state.

For each
v

tc step,we linearize
� Y � � yY �|� � � Y 3 � 
 � O } \ }K~ � 
 � 
{y � . Remaining

coefficients,e.g.,
j Y

, areevaluatedat 
@�V
�y . We avoid a full Newton linearizationin
orderto maintainrobustness.(Coefficientssuchas

� Y
areonly known approximately

andaregivenin tabular form.) For thefirst
v

tc step,�syY �@� 'Y and 
{y$�@
 ' .
Theenergies � Y aredirectlycoupledto 
 throughthecoefficients

jEY
. Theequation

for 
 doesnotcontainany spatialderivatives.After linearizing,wesolve for 
 analyt-
ically andsubstitutetheresultinto the � Y equations,(Schurcomplement).This yieldsW equationsin which each� Y is explicitly coupledto therest.Thelinearsystemis of
order � W , where � is thenumberof spatialpointsandis of theform���&��� ^ �|�|�8� ���@� , (5)

In (5),
�

is diagonal,
� ^ containstheoffdiagonaltermsstemmingfrom diffusionand� �

, from intergroupcoupling. Theparameter
:E3 fQz appearsin both

�
and � ; in both

places,it contributesto robustness.

Wederiveconditionson
:43 fQz thatyield diagonaldominanceandnon-negativeRS,�Q�cR . Theconditionsdeterminethe initial valueof

:43 fQz . Our strategy ensuresthat
each
v

tc iterate,yieldsa physicallyreasonableresult.In “real” problems,therequire-
mentis crucialsincethesolutionof (5) is usedto obtain 
 , which in turn determines
updatesof

j Y
,
� Y

, etc. A conventionalNewton iterationmaygeneratean unphysical
value,e.g., 
@� ��: , causingthecodeto halt.

Theschemehasbeenimplementedin a radiation-hydrodynamic code.Resultswill
bepresentedcomparingthe

v
tc schemewith a moreconventionalone.
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